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Geometrical families of mechanically stable granular packings
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We enumerate and classify nearly all of the possible mechanically stable (MS) packings of bidipserse
mixtures of frictionless disks in small sheared systems. We find that MS packings form continuous geometrical
families, where each family is defined by its particular network of particle contacts. We also monitor the
dynamics of MS packings along geometrical families by applying quasistatic simple shear strain at zero
pressure. For small numbers of particles (N<<16), we find that the dynamics is deterministic and highly
contracting. That is, if the system is initialized in a MS packing at a given shear strain, it will quickly lock into
a periodic orbit at subsequent shear strain, and therefore sample only a very small fraction of the possible MS
packings in steady state. In studies with N> 16, we observe an increase in the period and random splittings of
the trajectories caused by bifurcations in configuration space. We argue that the ratio of the splitting and
contraction rates in large systems will determine the distribution of MS-packing geometrical families visited in
steady state. This work is part of our long-term research program to develop a master-equation formalism to

describe macroscopic slowly driven granular systems in terms of collections of small subsystems.
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I. INTRODUCTION

Dry granular materials are collections of discrete, macro-
scopic particles that interact via dissipative and purely repul-
sive interactions, which are nonzero when particles are in
contact and vanish otherwise. Granular systems range from
model systems composed of glass beads to pharmaceutical
powders, to soils and geological materials.

A distinguishing feature of granular materials is that they
are athermal. Since individual grains are large, thermal en-
ergy at room temperature is unable to displace individual
grains. Thus, without external driving, granular materials are
static and remain trapped in a single mechanically stable
(MS) grain packing with force and torque balance on each
grain. In contrast, when external forces are applied to granu-
lar materials, these systems flow, which gives rise to grain
rearrangements, fluctuations in physical quantities such as
shear stress and pressure, and the ability to explore configu-
ration space.

There are many driving mechanisms that generate dense
flows in granular media—for example, oscillatory [1-4] and
continuous shear [5,6], horizontal [7] and vertical vibration
[8,9], and gravity-driven flows [10]. The fact that driven
granular systems can achieve steady states, explore configu-
ration space, and experience fluctuations as in thermal sys-
tems, has prompted a number of groups to describe these
flows using concepts borrowed from equilibrium statistical
mechanics (such as effective temperature) [11-16].

However, before a statistical mechanical treatment can be
rigorously applied to dense granular flows, fundamental
questions about the nature of configuration space should be
addressed. In particular, one needs to determine how dense
granular systems sample configuration space: Is it uniformly
sampled or are some states visited much more frequently
than others? How is the sampling of configuration space af-
fected by the strength and type of driving and dissipation
mechanisms? In this work and a series of recent papers
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[17-20], we address these questions with the goal of devel-
oping a comprehensive physical picture for static and slowly
driven granular matter.

In our previous studies, we focused on the statistical prop-
erties of static frictionless disk packings generated by slow
compression without gravity [17-19] or by gravitational
deposition [20]. We have determined that the probability dis-
tribution for mechanically stable packings is strongly peaked
around the value typically quoted for the random-close pack-
ing (RCP) volume fraction, and explained why RCP is ob-
tained by many compaction protocols. We have also found
that the MS-packing probabilities are highly nonuniform,
contrary to the Edwards’ equal-probability assumption [21]
that is frequently used in thermodynamic descriptions of
granular matter [14]. In addition, we have found that the
probabilities become more nonuniform with increasing sys-
tem size [17].

In the present article, we further explore the statistics of
granular microstates and its relevance for static and dynamic
properties of granular materials. We focus on slowly sheared
systems at fixed zero pressure, where the evolution can be
approximated as a sequence of transitions between MS pack-
ings. One of our results is that slowly sheared MS packings
occur as continuous geometrical families defined by the net-
work of particle contacts. Moreover, these geometrical fami-
lies are not uniformly sampled during quasistatic shear flow.
We focus on small systems, so that we are able enumerate
nearly all MS packings and obtain accurate packing prob-
abilities as a function of shear strain. Since our results indi-
cate the need for developing an alternative approach to the
quasithermodynamic descriptions based on the Edwards’
ideas, we advocate here a master-equation framework for
understanding dense granular flows.

This paper is organized as follows. In Sec. II, we provide
motivation for our investigations by introducing a simple
phenomenological master-equation model that reproduces
qualitatively some of the key features of slowly driven
granular systems. In Secs. III and IV, we present our model
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system, two-dimensional (2D) bidisperse mixtures of fric-
tionless, purely repulsive, soft grains, and describe the simu-
lation method that we employ to generate mechanically
stable packings. Here, we also clearly define the set of dis-
tinct MS packings in terms of the eigenvalues of the dynami-
cal matrix and discuss their symmetries. In Sec. V, we out-
line our method to study quasistatic simple shear flow of
frictionless disks in small 2D systems at zero pressure. In
Sec. VI, we describe the results of the quasistatic shear simu-
lations, with a particular emphasis on enumerating geometri-
cal families of MS packings and determining how they are
sampled during quasistatic dynamics. In Sec. VII, we pro-
vide an outlook for further work on larger system sizes. The
main conclusions of our studies and their relation to our
long-term research program are discussed in Sec. VIII. In
Appendixes A—C, we provide details of the numerical simu-
lations, the calculation of the dynamical matrix for the repul-
sive linear spring potential used in these studies, and the
method used to distinguish “polarizations” of MS packings
(i.e., MS packings that differ only by reflection or rotation).

II. MOTIVATION

Granular materials are athermal—they are unable to ther-
mally fluctuate and sample phase space. However, if a grain
packing is perturbed by external forces, it can move through
a series of configurations. The set of states populated by a
granular system during a series of discrete vertical taps was
characterized in [8]. As shown in Fig. 1(a), an initially loose
packing is compacted by tapping first gently, and then with
greater intensity. At sufficiently large tapping intensities, it is
no longer possible to further compact the system. However,
when the tapping intensity is reduced, the packing fraction
increases, rather than returning along the original packing
fraction trajectory. This new curve (packing fraction vs tap-
ping intensity) obtained by successively decreasing and then
increasing the tapping intensity in small steps is nearly re-
versible. A similar phenomenon has been found in granular
media undergoing cyclic shear [5], as shown in Fig. 1(b).

These experiments, which show that slowly driven granu-
lar systems appear to explore a well-defined set of states
reversibly, have prompted a number of theoretical studies
aimed at describing compacting granular systems using qua-
sithermodynamic approaches based on the Edwards’ en-
semble (i.e., the assumption of equally probable microstates)
[22-26]. However, in previous work [17-20], we have
shown explicitly for small systems that the probability dis-
tribution for mechanically stable packings is highly nonuni-
form. Moreover, we have demonstrated that this feature is
not sensitive to the packing-generation protocol and becomes
more pronounced as the system size increases. Thus, we ar-
gue that the Edwards’ equal-probability assumption is not
valid and alternate theoretical approaches for slowly driven
granular systems must be developed.

Although several alternatives have been put forward
[16,27,28], we advocate here for a master-equation approach
for the following reasons. First, quasistatic evolution of
slowly driven granular systems can be approximated as a
sequence of transitions between MS packings. Second, since
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FIG. 1. (a) Packing density p for mm glass beads as a function
of tapping intensity I (normalized by g). The system is initialized
in a dilute state at p=0.59 and then subjected to vibrations of in-
creasing intensity. At each I, the system is tapped until it achieves
a steady-state p. After reaching I'=7, the tapping intensity is de-
creased until I'< 1, and then increased again. Data is reprinted from
[8]. Copyright 1998, The American Physical Society. (b) Packing
fraction ¢ for mm glass beads as a function of shear angle 6 (deg)
during cyclic shear. 6 is increased linearly in time from 2.7° to
10.7°, then decreased to 2.7°, and finally increased again to 10.7°.
Data is reprinted from [5]. Copyright 2000, Springer-Verlag.

the system undergoes particle rearrangements as it transitions
between MS packings, it retains little memory from one MS
packing to the next, and successive MS packings are nearly
statistically independent. Thus, slowly driven granular sys-
tems can be approximated as a Markov chain of independent
transitions between MS packings and described using a
master-equation approach.

We have shown that the form of the microstate probability
distribution can be qualitatively reproduced by combining
probabilities for small subsystems. Thus, we also advocate a
“bottom-up” approach, in which large granular systems are
described as collections of nearly independent subsystems.
We view this work on small quasistatically sheared MS
packings as laying the groundwork for future studies that
will apply the master-equation approach to quantitatively de-
scribe the statistical properties of dense granular flows.

Model

To illustrate the importance of the above-mentioned fea-
tures in capturing the irreversible and reversible branches in
Fig. 1, we construct a simple model in which a granular

system is represented as a collection of N statistically inde-
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pendent small subdomains. Each subdomain j=1,...,N can
reside in one of several microstates kj= 1,...,m. The volume
of the subdomain j in state k; is V;(j,k;), and these subvol-
umes are assumed to be additive

N
V(A) = 2 Vi(jk)), (1)
j=1

where V(A) is the volume of the whole system in the state
A=(ky,...,ky). Since the subdomains are assumed to be sta-
tistically independent, the joint probability distribution for
the whole system is

N
P(Asn) =1 Pk, (2)
Jj=1

where Pj(k;;t) is the probability distribution for the mi-
crostates of subdomain j at time ¢.
The evolution of subdomains in a system driven by an

applied force of strength X\ is described by N independent
master equations

P(k;tiy) = Pi(k;t;) + > (Wi (NP (K" 31)
k'=1

=W Pj(kst)], (3)

where Wy, is the transition probability from state k' to state
k.

To qualitatively reproduce the irreversible and reversible
branches of states when the magnitude of the external forc-
ing N is ramped up and down, we use simple assumptions
regarding the volume distribution of individual subsystems
and the transition probabilities. We assume that the volumes
of individual subsystems are given by the expression

Vl = r(VO + Ae_KUxi) . (4)

where V,, A, and «, are constants, x;=(i—1)/(k—1), and r is
a random number. Note that states with higher indexes pos-
sess smaller volumes. The transition rates are modeled by the
expression

2
W= Cb(xij) rwe—xij/ZO'O)\(t), (5)

where C is the normalization constant and b(xij) is a bias
function

b = Duin + bo(1 =2N\) x>0, ©)
1 x<0.

b s bo, Which introduces asymmetry between up and down
jumps, and o, which determines the width of the Gaussian
distribution, are constants, and r,, is a random number. As
shown in Fig. 2, such a simple master-equation approach is
able to qualitatively reproduce features (evolution of the sys-
tem to a reversible branch of the packing fraction) found in
vertical tapping and cyclic shear studies of granular materi-
als. The success of this simple model emphasizes two key
points: (1) Only minimal constraints on transition probabili-
ties are required (not thermodynamics) to reach steady state
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FIG. 2. Model for quasistatic evolution of slowly driven granu-
lar materials. Evolution of the normalized packing fraction (¢
= Pmin) ! (Pmax— Pmin) fOr a system undergoing a long sequence of
quasistatic excitations (taps). The excitation amplitude \ is periodi-
cally ramped up and down in time ¢, as shown in the inset. The
system initially evolves along the irreversible branch /, but at sub-
sequent periods of ramping it moves along the reversible branch R
(with slight hysteresis). The results were obtained by solving a set
of master equations [Eq. (3)] with model transition rates Wy, (be-
tween states k and /) adjusted to qualitatively reproduce the packing
fraction versus tapping intensity obtained in experiments shown in
Fig. 1(a).

and (2) the assumption of weakly interacting small sub-
systems may be able to explain macroscopic phenomena in
slowly driven granular media.

These results suggest an approach to describe the quasi-
static evolution of granular systems: a Markov process char-
acterized by transfer rates between MS packing microstates.
To further develop this approach so that it can yield quanti-
tative predictions, one must determine (a) the types of mi-
crostates that occur in static granular systems and (b) transi-
tion probabilities between these microstates when the system
is slowly driven. To provide the necessary input for con-
structing quantitative descriptions, in this paper we study the
structure of configuration space and transitions between mi-
crostates in small 2D granular systems undergoing quasi-
static shear strain at fixed zero pressure.

III. SMALL PERIODIC GRANULAR PACKINGS IN
SIMPLE SHEAR

A. Bidisperse frictionless disks

We consider 2D systems of soft, frictionless disks inter-
acting via the pairwise additive purely repulsive linear spring
potential

N
V)= 2 Vilry), (7)
i<j=1
€ «,
VZ(rij) = ;(1 - ”ij/ﬂ'ij) ®(Uij/"ij— 1), (®)
where a=2, 5:(71 ,...,Fy) denotes the system configuration,

7; is the position of the center of disk i, r;=|F,—7] is the
center-to-center separation between disks i and j, and the
sum is over distinct particle pairs. The strength of the spring
potential Eq. (8) is characterized by the energy scale €, and

061303-3



GAO, BLAWZDZIEWICZ, AND O’HERN

the range by the average particle diameter o;;=(0;+0;)/2.
The Heaviside step function ®(x) turns off the interaction
potential when the particle separation is larger than o;.

All numerical simulations described in this paper were
performed for 50-50 (by number) binary mixtures of large
and small particles with diameter ratio 1.4. In such bidisperse
mixtures, shear-induced crystallization is inhibited [29]; thus
the system is well suited for investigations of quasistatic evo-
lution of disordered granular systems. We focused on small
systems with the number of particles in the range N=4 to 20.

To mimic the behavior of granular packings, we consider
MS disk configurations at infinitesimal pressure and particle
overlaps. As shown in our recent experimental and numerical
study, statistical properties of disks interacting via the repul-
sive linear spring potential (8) closely match properties of
plastic and steel disks in a system where frictional forces
have been relaxed using high frequency, low-amplitude vi-
brations [20].

B. Shear-periodic boundary conditions

In our simulation studies, the particles are confined to a
L X L periodic box, as illustrated in Fig. 3. The unit cell can
either be a square [cf. Figure 3(a)], or it can be deformed in
the x direction [cf., Figs. 3(b) and 3(c)]. These shear-periodic
boundary conditions allow us to generate an ensemble of
anisotropic granular packings as a function of the shear
strain y=Ax/L, where Ax is the horizontal shift of the top
image cells relative to the bottom image cells. Moreover,
simulations of systems with gradually changing strain
[30,31] enable us to study quasistatic evolution of a granular
packing under shear.

Note that shear-periodic boundary conditions are identical
at v and 1-7 as shown in Fig. 3. Also, when reflection
symmetry is taken into account, it is clear that we only need
to consider shear strains in the range y=[0,0.5] to generate
static packings at arbitrary shear strains. However, in the
case of continuous quasistatic shear flow, evolution of the
system over multiple shear strain units must be investigated
to capture the full dynamics.

IV. ENUMERATION OF MS PACKINGS AT ARBITRARY
SHEAR STRAIN

A. Packing-generation protocol

Zero-pressure MS packings at a given shear strain are
generated using the compression/decompression packing-
generation protocol from our previous studies of unsheared
MS packings [17]. We briefly outline the procedure below
for completeness. We begin the packing-generation process
by choosing random initial particle positions within the
simulation cell at packing fraction ¢,=0.50 (which is well
below the minimum packing fraction at which frictionless
MS packings occur in 2D). We then successively increase or
decrease the diameters of the grains, with each compression
or decompression step followed by conjugate gradient mini-
mization [32] of the total energy in Eq. (7).

As illustrated in Fig. 4, the system is decompressed when
the total energy Eq. (7) at a local minimum is nonzero—i.e.,
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FIG. 3. (Color online) Schematic of shear-periodic boundary
conditions. (a) MS packing with N=6 particles confined to a L
X L box with shear strain y=Ax/L=0. (b) MS packing in a unit cell
with y=0.2. Note that at arbitrary 7, a given particle in the primary
cell is not directly above (or below) its image. (c) MS packing at
v=0.8, which shows that configurations at y and 1— vy are related by
an inversion about the vertical axis. (d) MS packing at y=1. At unit
shear strain, shear-periodic boundary conditions are identical to
standard periodic boundary conditions [30]. Thus, shear-periodic
boundary conditions have unit period. In all panels, the shaded par-
ticles indicate a given particle in the primary cell and its image in a
neighboring cell.

there are finite particle overlaps [cf., Figs. 4(a) and 4(d)]. If
the potential energy of the system is zero [Fig. 4(c)] and gaps
exist between particles [Fig. 4(f)], the system is compressed.
The increment by which the packing fraction ¢ is changed at
each compression or decompression step is gradually de-
creased. Numerical details of the algorithm are provided in
Appendix A.

In the final state of the packing-generation process, the
potential energy vanishes [Fig. 4(b)], but any change of the
relative particle positions (excluding rattler particles, which
can be moved without causing particle overlap) results in an
increase in the potential energy. Thus, the final state is a
mechanically stable configuration (or collectively jammed
state [33]) at jamming packing fraction ¢,. At each fixed 7,
MS packings form a discrete set in configuration space. The
packing-generation process is repeated more than 10° times
for at least 100 uniformly spaced shear strain values in the
interval 0<y<0.5. A large number of independent trials are
required to enumerate nearly all MS packings because the
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FIG. 4. Schematic of the compression/decompression protocol
to create MS packings. In panels (a)-(c), we show a schematic of
the energy landscape V(E) in the vicinity of the static granular pack-
ings (at point & in configuration space) in panels (d)—(f). If the
system exists in a nonoverlapped configuration [panel (f)] with gaps
between particles and zero energy per particle (V=0), it will be
compressed followed by energy minimization. If the system exists
in an overlapped configuration [panel (d)] at a local energy mini-
mum with V>0, it will be decompressed followed by energy mini-
mization. When the system switches between the cases displayed in
panels (d) and (f), the size of the compression/decompression incre-
ment is decreased. The process stops when the system exists in a
static granular packing at a local energy minimum that is infinitesi-
mally above zero. This schematic is shown for shear strain y=0, but
a similar process occurs for each 7.

MS probability distribution varies by many orders of magni-
tude.

We use an empirical method for determining whether we
have saturated the packing-generation method, which was
first described in [18]. We assume that we have found
“nearly all” MS packings if we generate the same set of
packings for two large trial counts that differ by at least a
factor of 10. For this reason, we state that we generate
“nearly all” instead of ‘all’ MS packings using this method.
We note that any missing MS packings would be extremely
rare (with probabilities less than 107°), and are likely disor-
dered since we consider small system sizes, simulation cells,
and bidisperse mixtures that prevent crystallization and
phase separation. Further, the possibility of missing packings
does not affect the conclusions described in Sec. VIII.

B. Classification of granular packings
1. Dynamical matrix

With our precise measurement of the jamming packing
fraction ¢, to within 107 of the jamming point, it is very
rare that two distinct MS packings have the same ¢;. Thus, it
is often convenient to characterize MS packings by ¢;. How-
ever, in our detailed investigations of the quasistatic evolu-
tion of sheared granular packings, a more precise classifica-
tion of MS packings is necessary.

To determine the set of distinct MS packings, we use the
eigenvalues and eigenvectors of the dynamical matrix [34]
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where ¢, is the mth component of the configuration vector £
and 50 gives the configuration of the reference MS packing.
Since rattler particles do not contribute to the stability of the
system, we consider only the dynamical matrix for the me-
chanical backbone of the packing. This matrix has d\ rows
and columns, where d=2 is the spatial dimension, N=N
—N, is the number of particles in the mechanical backbone,
and N, is the number of rattler particles.

Since the dynamical matrix is symmetric, it has d\ real
eigenvalues {m;}, d of which are zero due to translational
invariance of the system. In a mechanically stable disk pack-
ing, no collective particle displacements are possible without
creating an overlapping configuration; therefore, the dynami-
cal matrix for MS packings has exactly d(N-1) positive
eigenvalues [35]. We limit the results below to mechanically
stable packings.

2. Polarizations

According to our previous investigations [17,18], distinct
MS packings always have distinct sets of eigenvalues {m,},
except when packings can be related to each other by reflec-
tion or rotation [35]. When we treat different “polarizations”
associated with each symmetry transformation as the same
state, distinct MS packings can be classified according to the
lists of eigenvalues of their dynamical matrices. This ap-
proach was adopted in [17,18], where we considered only
static, isotropic particle configurations at y=0. The eight
equivalent polarizations for a MS packing at y=0 are shown
in Fig. 5.

In contrast, in our present study we consider continuous
shear deformations of the system. After an isotropic unit cell
is deformed, different polarizations of a given state can be
transformed into distinct MS packings (i.e., packings distin-
guishable by the lists of eigenvalues {m;}). For example, all
polarizations shown in the left (right) column of Fig. 5, after
a step strain are transformed into nonequivalent configura-
tions. Our present classification scheme for MS packings
takes this effect into account.

Accordingly, we treat states that differ by reflection or
rotation by the angle a=7/2 or 37/2 as distinct MS pack-
ings. However, due to symmetry of shear flow (cf. bottom of
Fig. 5), the states that are related by a rotation by the angle
a=m deform in equivalent way. Therefore, such states are
treated as equivalent states. Further details regarding polar-
izations of MS packings, including the procedure we use to
distinguish polarizations, are discussed in Appendix C.

C. Distinct MS packings at integer and noninteger strains

MS packings at integer shear strains have equivalent
boundary conditions to those in standard square periodic
cells (as shown in Fig. 3). Thus, we can use our previous
extensive calculations of MS packings generated in square
cells with periodic boundary conditions [17].

In Table I we show the number of distinct MS packings at
integer shear strains Ny when we treat all polarizations as the
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FIG. 5. (Color online) (1) A typical MS packing for N=6 par-
ticles at integer shear strain. The configurations in panels (2)—(8) are
obtained by applying the seven possible reflections and rotations in
two spatial dimensions consistent with periodic boundary condi-
tions in an undeformed square cell. (See Appendix C) Configura-
tions in opposing columns are related by a rotation R; by 7 about
an axis coming out of the page. (bottom) This schematic shows that
configurations undergoing simple planar shear in 2D are invariant
with respect to Rj.

same (data from [17]) and N? when we account for different
polarizations (as described above). The ratio N?/Nj is
smaller than 4 because of reflection or rotation symmetry of
some MS packings. As depicted in Fig. 6, both N; and N?
grow exponentially with system size.

The number of distinct MS packings N?(y) (including po-
larizations) versus shear strain is shown in Fig. 7 for several
system sizes. The results show that (1) the maximum number
of distinct packings occurs at integer and half-integer shear
strains, and (2) there is a noticeable dip in N? at vy =~0.2.

PHYSICAL REVIEW E 80, 061303 (2009)

TABLE 1. Number of distinct MS packings at integer shear
strains when we treat all polarizations as the same N, and when we
distinguish among different polarizations N? as a function of system
size N. The third column gives the ratio NU/N,. Data for Ny is
obtained from [17].

N N, NP NP/N,
4 3 6 2.00
6 20 68 3.40
8 165 612 3.71

10 1618 6378 3.94

12 23460 91860 3.92

However, as the system size increases, the number of distinct
MS packings becomes more uniform as a function of shear
strain.

V. QUASISTATIC SHEAR FLOW AT ZERO PRESSURE
A. System dynamics
1. Quasistatic shear-strain steps

To mimic quasistatic evolution of a frictionless granular
packing, we apply a sequence of successive shear-strain
steps of size 5y<<1 to a system of bidisperse disks with
shear-periodic boundary conditions. Each step of the proto-
col consists of (1) shifting the x-coordinate of the particles,

x[—>x[+5)/y,-, (10)

in conjunction with the corresponding deformation of the
unit cell; and (2) the compression/decompression packing-
generation process (described in Sec. IV A) to achieve a
zero-pressure MS configuration with infinitesimal particle
overlaps.

This procedure generates quasistatic shear flow at con-
stant zero pressure (but varying packing fraction), which is
an appropriate description of slowly sheared granular matter,
where particle overlaps are always minimal. During the evo-
lution, the system constantly expands and contracts to remain
at the onset of jamming with packing fraction ¢; that de-
pends on y. We note that our procedure is distinct from the

12 +

[e)
T

InN,, InN?

IN
T

FIG. 6. The number of distinct mechanically stable packings at
integer shear strain when we treat all polarizations the same N
(circles) and when we account for different polarizations N
(squares). The solid and long-dashed lines have slope =1.2.
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FIG. 7. The number of distinct mechanically stable packings
N’(y) as a function of shear strain y for N=4 (long-dashed), 6
(solid), and 10 (dotted). N?(y) is normalized by the average number
of MS packings over all shear strain (N?(y)). The sampling interval
is Ay=1072. As shown in Fig. 3, the same set of MS packings occur
at yand 1—v.

quasistatic evolution used in recent investigations of sheared
glass-forming liquids [36,37], where a constant-volume en-
semble was implemented.

2. Particle rearrangements

During a single shear-strain step d, particle positions can
either change continuously or a sudden particle rearrange-
ment can occur. A continuous evolution step is schematically
depicted in the left panels of Fig. 8, and the right panels
illustrate a strain step that yields a particle rearrangement.

A

FIG. 8. Schematic of the evolution of the energy landscape dur-
ing quasistatic shear at fixed zero pressure from shear strain 7y to
v+ 8y. In (a), the system evolves continuously from the local mini-
mum at shear strain y (1) to the one at y+ 8y (4) because there are
no particle rearrangement events during the shear strain interval. In
contrast, in (b) we show that when the system undergoes a particle
rearrangement event, it will reside in a different energy minimum at
v+ &y compared to the one at . Snapshots of the static packings at
shear strain 7y (gray) and y+ 8y (black) are superimposed in (c) and
(d), which correspond to the potential energy landscape dynamics in
(a) and (b), respectively. In (d), three of the original contacts are
removed and four new contacts are generated as a result of the
particle rearrangements.

PHYSICAL REVIEW E 80, 061303 (2009)

In both cases, the system initially resides in the local
minimum (point 1) in the energy landscape. Since this mini-
mum corresponds to a MS packing, its energy is infinitesi-
mal. When the affine transformation Eq. (10) is applied, the
system moves to point 2 in the energy landscape. In the case
of continuous evolution, depicted in Fig. 8(a), the energy
minimization (point 3) and subsequent decompression (point
4) move the system back to the neighborhood of the initial
packing. As illustrated in Fig. 8(c), at the initial and final
points (1) and (4), the topology of contact networks is un-
changed.

In contrast, when the energy minimization that follows an
affine shear-strain step drives the system into a zero-energy
region corresponding to an unjammed packing [i.e., point 3
in Fig. 8(b)], upon subsequent compaction the system is
driven to a MS packing (point 4) with a different contact
network than the initial packing (point 1), as illustrated in
Fig. 8(d).

During the continuous portion of the quasistatic shear
strain evolution, the MS packings that are visited do not
depend on the energy minimization method (e.g., energy re-
laxation via dissipative forces versus the conjugate gradient
algorithm [17]) or parameters related to the compaction and
decompression processes. Dynamical features do not influ-
ence the MS packings that are obtained along the continuous
region because the system remains in the basin of the origi-
nal mechanically stable packing. However, when a shear
strain step leads to particle rearrangements, the system is
taken to a new region of the energy landscape, and the en-
ergy minimization scheme, compaction and decompression
rates, and even the location of rattler particles can influence
the final MS packing. In small systems (N < 16), we find that
the dynamics is weakly sensitive to these features, whereas
in larger systems noise and protocol dependence play an im-
portant role in determining steady-state MS packing prob-
abilities. In Sec. VII, we will describe future work, in which
we will tune the dynamics to determine its influence on the
transition rates among MS packings.

B. Deterministic and contracting evolution of small frictionless
MS packings

Our key results regarding quasistatic evolution of small
granular systems are summarized in Figs. 9 and 10 and in
Tables II and III. The results show that (1) the evolution of
small systems is deterministic; (2) after transient evolution,
the system becomes locked into a periodic orbit; and (3) the
evolution in configuration space is strongly contracting, in
the sense that each unit strain leads to a significant reduction
of the number of dynamically accessible MS packings.

Deterministic evolution. The deterministic character of the
system evolution over continuous portions of the trajectories
can be justified using arguments based on the continuity of
the energy landscape, similar to those illustrated in Fig. 8(a).
The exceptions are bifurcation points, which will be de-
scribed in Sec. VII. Indeterminacy can also occur due to the
presence of rattlers or random particle motions in unjammed
configurations. For systems with N<<16 evolved according
to the algorithm described in Sec. V A 1, the observed evo-
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FIG. 9. The jammed packing fraction ¢, versus shear strain 7y
during quasistatic shear at zero pressure for N=10. The dashed line
shows the initial transient and the solid line highlights the periodic
behavior with unit period that begins near y,~2.5. The inset shows
¢, for the same system in the main figure except only at integer
shear strains.

Iution was always completely deterministic. Random evolu-
tion in larger systems and systems with random noise are
discussed in Sec. VIL.

Periodic orbits. In Fig. 9, we track the evolution of the
jammed packing fraction ¢; as a function of shear strain 7y
during zero-pressure quasistatic shear flow after the system is
initialized in one of the MS packings at y=0 for N=10 par-
ticles. Figure 9 shows the complete trajectory and the inset
shows ¢; only at integer strains. We observe that after a short
transient of approximately two units of strain, the system
becomes locked into a periodic orbit (with unit period 7=1).
Similar behavior is observed for systems with N=4 to 14
particles, as summarized in Table II. Although we have a
limited range of system sizes, for which a complete analysis
of the quasistatic evolution has been preformed, the results
show that both the transient time 7, and period 7T increase
somewhat with system size. (Note that several periodic orbits
for N=12 and 14 particles have anomalously large transients,
cf. Sec. VII.)

Contracting evolution. The contracting character of the
quasistatic shear flow is illustrated in the “tree” diagram in

70 -
60 |
50 | 8
I

FIG. 10. This “tree” diagram for N=6 shows the evolution at
integer shear strains of the system undergoing quasistatic shear flow
at zero pressure. The system is initialized at all 68 possible MS
packings using the same indexes i as in Table III. The shear strain
axis has been shifted so that the periodic orbits for all initial MS
packings begin at y=2. There is only one MS packing (67) that is
dynamically accessible at large shear strain.
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TABLE II. The maximum transient shear strain y,"** and period
T of each distinct periodic orbit in integer strain units for several
system sizes N. (¥ is rounded to the nearest integer shear strain.)
In the fourth column, we list the average jammed packing fraction
(¢ of the MS packings that are dynamically accessible at large
shear strain for each periodic orbit. For systems with multiple peri-
odic orbits, we list ¥, T, and (¢;) for each.

N

N
=
~

(¢

0.829
0.777
0.820
0.825
0.815
0.808
0.833
0.812
0.782
0.815
0.811
0.789
0.814
0.816
0.814
0.847
0.815
0.847
0.836
0.804
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Fig. 10. This diagram represents the complete set of trajec-
tories, shown for integer strain, for a system of N=6 par-
ticles. For this system size there are N!=68 possible MS
packings at any given integer shear strain, yet only one of
them is dynamically accessible in the large shear strain limit.

The contraction of the set of dynamically accessible states
as the system evolves results from the deterministic and ir-
reversible character of quasistatic evolution. As illustrated in
Fig. 10, from each MS packing at an integer strain 7, the
system transitions to a unique MS packing at the strain y
+1; however, more than one state can transition to a given
state. A complete catalog of transitions at integer shear
strains for the system of N=6 particles is given in Table III.
From this table, a complete list of trajectories of the whole
evolution process can be constructed without further simula-
tions.

As shown in Table II, the number of periodic orbits to
which the system contracts increases with the system size.
However, for all systems studied, the number of orbits and
the number of states visited at long times is small compared
to the total number of MS packings.

The results in the last column of Table II give the average
jammed packing fraction (¢, of the MS packings sampled
for a given periodic orbit. The MS packings that occur in
periodic orbits typically have the highest packing fractions
out of the entire distribution.
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TABLE III. Catalog of the N?=68 possible transitions from a
MS packing with index i at y=0 to index j at y=1 for quasistatic
shear flow at zero pressure for N=6.

i(y=0)  jly=1) i(y=0) jly=1) i(y=0) j(y=1)

1 37 26 67 51 62
2 67 27 37 52 67
3 37 28 62 53 67
4 62 29 67 54 67
5 67 30 62 55 67
6 62 31 62 56 67
7 67 32 67 57 67
8 67 33 62 58 67
9 62 34 37 59 67

10 37 35 67 60 67

11 67 36 62 61 67

12 67 37 67 62 67

13 67 38 62 63 67

14 67 39 37 64 62

15 67 40 67 65 67

16 62 41 37 66 67

17 62 42 67 67 67

18 67 43 67 68 67

19 62 44 62

20 37 45 67

21 62 46 37

22 67 47 67

23 67 48 67

24 67 49 67

25 37 50 37

VI. FAMILY STRUCTURE OF THE SET OF MS
PACKINGS

An analysis of the deterministic evolution of the system
monitored at integer values of strain is sufficient to conclude
that the dynamics is contracting and periodic at large shear
strains. However, it might be puzzling that both the transient
shear strain and period are so short, i.e., much shorter than
the number of MS packings (cf., Tables I and II). To shed
light on this behavior we will now analyze how the sets of
MS packings at different values of shear strain are con-
nected.

A. Construction of continuous geometrical families
of MS packings

As described in Sec. IV B, we can identify the distinct
MS packings at a given shear strain using the eigenvalues of
the dynamical matrix. However, this method will not work
for comparing MS packings at different shear strains since
the eigenvalues vary continuously with 1.

To study the relationship between distinct MS packings at
different shear strains, we divide the shear strain region into
small intervals 7,,;—7,. For each distinct MS packing at 7,

PHYSICAL REVIEW E 80, 061303 (2009)
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FIG. 11. Schematic of the evolution of the jamming packing
fraction ¢; during the shear strain interval y, to y,.;. In (a) the
particle contact network does not change from vy, to 7,,;, while
there is a discontinuity in ¢; in (b) and in the derivative of ¢; in (c)
at ", which signal a change in the contact network.

we monitor the particle contact network as the system
evolves toward v,,, (and y,_;). In Fig. 11(a), we show the
continuous evolution of ¢; between vy, and ,,;, which im-
plies that there are no rearrangement events and no changes
in the particle contact network during this interval. Thus, the
continuous evolution of ¢; identifies a portion of a geometri-
cal family of MS packings all with the same particle contact
network that exist over a continuous shear strain interval.

In our simulations, we find that a change in the network of
particle contacts (i.e., switches from one geometrical family
to another) is accomplished either by jumps (discontinuities
in ¢;) or kinks (discontinuities in the derivative of ¢; with
respect to ) as shown in Figs. 11(b) and 11(c), respectively.
As will be discussed in Sec. VI B, a discontinuity in ¢; cor-
responds to a system instability and a change in the contact
network with finite particle displacements; whereas a discon-
tinuity in the derivative of ¢; corresponds to a change in the
contact network without finite particle displacements.

To construct the complete map of distinct geometrical
families for all shear strain, we can simply link the equiva-
lent geometrical families at the shear strain end points 7y, or
terminate the family if it has no counterpart. Because of the
contracting dynamics described in Sec. V B, it is important
to use sufficiently small shear-strain intervals so that we have
enough shear strain resolution to capture small families. (See
Appendix A for additional details for constructing geometri-
cal families.)

B. Complete map of MS packings for continuous shear strain

We find that a particularly simple, pictorial method to
distinguish geometrical families is by monitoring the jam-
ming packing fraction ¢; as a function of shear strain (in-
stead of a complete representation of the particle contact net-
work). The complete map of MS packings—a; for all
distinct MS packings at all shear strains—is displayed in Fig.
12 for N=6. The structure of the map is quite complex even
for N=6, and it possesses a number of distinctive features.

First, the map is composed of a finite number (N;=334 for
N=6) of curved concave-up segments each of which corre-
sponds to a distinct geometrical family of MS packings. Sec-
ond, the parabola-like curves either end discontinuously [cf.,
point 2 in the blowup shown in Fig. 12(b)] or form a kink
[points 4 and 5 in Fig. 12(b)]. Third, the curves significantly
vary in length, and they are not symmetric about the apexes
[38].

061303-9



GAO, BLAWZDZIEWICZ, AND O’HERN

0.85

FIG. 12. (Color online) (a) Complete geometrical family map—
jamming packing fraction ¢,(7y) as a function of shear strain y—for
N=6 [thick blue (gray) lines]. (b) Close-up of boxed region in (a).
The thick orange (gray) lines indicate increasing shear strain evo-
lution, while the thick black line indicates decreasing shear strain
evolution. (c) Particle configurations at five points during evolution
within the family map are also shown. Solid lines connecting par-
ticle centers represent particle contacts; each distinct network is
given a different grayscale. Contacts denoted by thick lines in pan-
els 4 and 5 are either gained or lost as the system evolves from
configuration 4 to 5.

We find that a given parabola-like curve ends when either
the contact network of that particular continuous region be-
comes unstable and the system jumps to a one or the contact
network merges with another network to form a kink. Ex-
amples of contact networks corresponding to characteristic
points on the family map are shown in Fig. 12(c).

Figure 13 shows that the family-length distribution is ex-
ponential (with the characteristic strain of (L,)~0.06 for N
=6 [39]) and the distribution of second derivatives possesses
a strong peak. We speculate that the decay length (L,/) is
related to the average yield strain in frictionless MS pack-
ings. Thus, it is important to study (L,) as a function of
system size and this direction will be pursued in future work.

The jammed packing fraction ¢; has parabolic-like de-
pendence on vy because we consider jammed disk packings.
The general feature of these packings is that as shear strain
first increases the system must dilate (packing fraction de-
creases) as particles climb over each other [40]. However,
beyond a critical shear strain the system must compact to
maintain particle contacts.

Since the shape of the family map ¢;=¢,(7y) is entirely
determined by the geometry of the particle contacts at zero

PHYSICAL REVIEW E 80, 061303 (2009)
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FIG. 13. (a) Probability distribution P(L,) for the length (in
units of strain) of geometrical families for N=6. The solid line
represents exponential decay with decay length (L,)~0.06. (b) Dis-
tribution P(C) of second derivatives of ¢;(y) (with respect to shear
strain ) for the distinct geometrical families for N=6. The family
average is C~5.6.

pressure, this shape is independent of the detailed form of the
finite-range potential [Eq. (8)]. In particular, it does not de-
pend on the power « defining the interparticle elastic forces.

We note that recent simulations have found that packings
of ellipsoidal particles possess a large number of low-energy
vibrational modes, which are quartically, not quadratically,
stabilized [41-43]. Thus, we predict nonparabolic depen-
dence of ¢,(y) for small quasistatically sheared packings of
ellipsoidal particles.

In Table IV we summarize our results by compiling sta-
tistics of the complete geometrical family maps for several
system sizes N. We provide the total number of distinct geo-
metrical families Ny, average number of distinct MS pack-
ings (N2(1y)), average packing fraction (¢,(y)), average fam-
ily length (L), and average family second derivative C (with
respect to ), where (.) indicates an average over shear strain

-

TABLE IV. Statistics for complete geometrical family maps.
Total number of distinct geometrical families Ny, average number of
distinct MS packings (N(y)), average packing fraction {(¢,(7)),
average family length (L,), and average family second derivative C
for several system sizes N [44].

N Ny (N (7)) (&/7) (L,) ¢
4 15 4 0.788 0.18 1.7
6 334 47 0.739 0.06 5.6

10 34822 2896 0.753 0.03 4.9

061303-10



GEOMETRICAL FAMILIES OF MECHANICALLY STABLE ...

C. Quasistatic evolution

Since we have now mapped all of the MS packings over
the full range of shear strain, we can now relate key features
of the quasistatic evolution at zero pressure to the family
structure of the MS packings. We recall from Sec. V that the
evolution is strongly contracting, nonergodic, and after a
short transient, the system settles on a periodic trajectory.

1. Topological changes and transitions between geometrical
families of MS packings

We first examine a detailed snapshot of the evolution de-
picted by thick orange (gray) line in Fig. 12(b). Characteris-
tic points along the trajectory are indicated by the circles
marked 1-5, and the corresponding contact networks of the
evolving MS packing are shown in Fig. 12(c).

The evolution starts at point 1, which represents one of
the MS packings in a system with an unstrained unit cell.
When the strain is gradually increased, the MS packing
evolves continuously from point 1 to 2 along the geometrical
family that includes the initial point. As shown in Fig. 12(c),
there is no topological change in the contact network during
the continuous part of the trajectory.

When the strain is increased beyond point 2 (where the
family ends), the system discontinuously transitions to an-
other branch of MS packings. During the transition, the
packing fraction ¢; discontinuously increases, particles un-
dergo finite displacements, and a new contact network is
formed. Due to the condition that the system must be me-
chanically stable at zero pressure, only jumps up in the pack-
ing fraction are allowed.

With further increases in shear strain, the evolution re-
mains continuous until point 4, where the system encounters
a kink in ¢,(vy) [i.e., discontinuity in the derivative of ¢,(y)].
The kink signals a change in the particle contact network,
with no finite particle displacements. Such a change occurs
when a new interparticle contact is formed and another is
broken to prevent the system from being overconstrained, as
shown in panels 4 and 5 in Fig. 12(c). A change in the di-
rection of particle motion also accompanies a kink in ¢;.
Note that kinks provide an important mechanism by which
¢, of a MS packing can decrease during quasistatic shear at
zero pressure. Continued increases of the shear strain beyond
point 5 give rise to continuous evolution of ¢;(7y) until the
next discontinuity. Only two types of discontinuities in
¢,—jumps and kinks—have been observed.

We note that jumps of the system to new contact networks
at terminal points of continuous families provide a mecha-
nism for hysteresis and irreversibility as found in recent ex-
periments of cyclically sheared granular systems [5]. If the
applied shear strain is reversed at point 3 in Fig. 12(b), the
system will evolve along the thick black-highlighted region
of ¢;(y), not the original one sampled during the increasing
applied shear strain.

For small systems (N<16) undergoing quasistatic shear
strain at zero pressure (using conjugate gradient energy mini-
mization), we have found that the process of jumping from
an old to a new MS packing family is deterministic, but
further study is required to determine to what extent it de-
pends on the packing generation protocol. Below, we will

PHYSICAL REVIEW E 80, 061303 (2009)

FIG. 14. The complete geometrical family map as shown in Fig.
12 as a function of shear strain y for N=6 (gray lines). The black
line shows the evolution of ¢; during quasistatic shear strain start-
ing from a single MS packing with ¢,=0.742 at y=0.

show that bifurcations in configuration space can affect the
destination of MS packings during quasistatic shear strain;
this topic will be discussed in more detail in Sec. VII.

2. Periodic orbits and contracting evolution

A representative trajectory ¢;=d,(y) over several strain
units is shown in Fig. 14. The system is initialized in one of
the MS packings (¢;=0.742) at y=0, and we plot ¢, as a
function y overlayed on the complete family map for N=6.
The trajectory exhibits continuous parts separated by kinks
and jumps, similar to those described in Sec. VI C 1. After a
short transient evolution for y<<1y,=1.25, the trajectory be-
comes periodic with period 1, consistent with the results dis-
cussed in Sec. V B.

The behavior shown in Fig. 14 is typical for small pack-
ings under quasistatic shear strain. In Fig. 15(a), we show the
evolution of ¢; for all N?(y,=0)=68 MS packings at initial
shear strain y,=0. After a short initial transient y= 0.4, most
of the initial conditions have converged onto one of several
persistent trajectories. After y,~2.25, all trajectories have
converged onto a periodic orbit with unit period.

Figure 15(b) shows the corresponding results for all
NP(y5=0.23)=26 MS packings beginning at 7,=~0.23
(which is a region of shear strain at which there are the
smallest number of MS packings according to the results
depicted in Fig. 7). Qualitatively, the picture is similar to that
in Fig. 15(a): there is rapid contraction, several persistent
trajectories, and then collapse onto a single periodic orbit.
The two ensembles with ;=0 and 0.23 sample different MS
packings during the transient, but evolve to the same peri-
odic orbit found in Fig. 15(a). Thus, these systems sample
only a small fraction of the possible geometrical families in
the large shear-strain limit.

To determine the source of the rapid contraction of the
number of dynamically accessible states, we magnify the re-
gion of small shear strains y—1, in Fig. 16. The results in-
dicate that the contraction occurs when more than one trajec-
tory jumps to the same branch. The initial contraction
happens quickly as depicted in Fig. 17, although there is
some dependence of the contraction on .

An examination of the close up in Fig. 16 suggests that
the source of the quick contraction and transient to the final
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FIG. 15. The complete geometrical family map as shown in Fig.
12 as a function of shear strain y for N=6 (gray lines). In (a) and
(b), we show the evolution of ¢;(y) under quasistatic shear strain
starting from all distinct MS packings at y=0 and 0.23, respectively
(black lines). The number of distinct MS packings at y=0.23 is
smaller than the number at 0 by a factor of =3.

periodic orbit is threefold: (i) there is a large number of short
families (cf., Fig. 13); (ii) jumps always occur up in packing
fraction, which makes low-packing-fraction MS packings
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FIG. 16. Magnifications of the complete family maps and qua-
sistatic shear evolution at y— 1y, for initial shear strains (a) y,=0
and (b) 0.23 from Figs. 15(a) and 15(b).
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N/NP(r)

FIG. 17. The number N, of distinct MS packings visited during
quasistatic shear (normalized by N?(y,)) versus y—y, for N=6 ob-
tained by summing over all of the possible MS packings initialized
at vy, for y,=0 (dashed line) and 0.23 (solid line).

dynamically inaccessible; and (iii) some families collect sig-
nificantly more MS packings per unit length than the others,
as discussed below.

To estimate the “basins of attraction” for each geometrical
family, we calculated the number of jumps that each geo-
metrical family collects during quasistatic shear strain. In
Fig. 18, we show the number of trajectories N, that jump to
a particular geometrical family during quasistatic shear as a
function of the average jammed packing fraction ¢, of the
geometrical family for N=6. N,, is normalized by the family
length to account for the fact that longer families can collect
more trajectories. As shown in Fig. 18 we find a general
trend that the families at higher packing fractions collect
relatively more of the trajectories.

VII. TRAJECTORY SPLITTING: BREAKDOWN
OF DETERMINISM

In the previous Secs. V and VI, we described our results
for quasistatic shear flow at zero pressure for small systems
N=14, which displayed deterministic and contracting dy-
namics. In particular, we found that when a small MS pack-
ing undergoes a jump discontinuity at a given v, it makes a
transition to a uniquely determined MS packing. Thus, these

1.0 - : T T
~ 00} ° g
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FIG. 18. The number of trajectories N, that jumped to a particu-
lar geometrical family (normalized by the geometrical family
length) during quasistatic shear versus the average packing fraction
¢, of the given geometrical family. Jumps were collected over nar-
row strain intervals Ay=10"2 for N=6. The solid line indicates an
average over bins in packing fraction with size 0.02.
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FIG. 19. The jammed packing fraction ¢, versus shear strain y
during quasistatic shear flow at zero pressure beginning from an
initially unstrained MS packing for N=20. After a short initial tran-
sient (y,~ 1), the system locks into an apparent periodic orbit with
large period 7> 100. The first cycle is denoted using long-dashed
and solid black lines. However, during the initial phase of the sec-
ond cycle (long-dashed line), the trajectory begins to deviate from
that in the first cycle near y,=137.6 (vertical dashed line). The
nonrepeating part of the second cycle is depicted using a solid gray
line. In the inset, we overlay cycles 1 (dotted) and 2 (solid) near 7.

systems lock into periodic orbits with typically small periods
and the number of MS packings that are sampled at large
shear strain is a small fraction of all possible MS packings.

In contrast to the results found for smaller systems, we
find that for slightly larger systems (N> 16) there is a dra-
matic increase in the period. In addition, the deterministic
behavior appears to break down, i.e., we cannot predict with
unit probability the transitions from one MS packing to an-
other.

The breakdown of determinism is shown for N=20 in Fig.
19, where we plot the evolution of ¢; during quasistatic
shear at zero pressure. After a short transient strain (y,~ 1),
the system falls onto an apparent periodic orbit with large
period 7> 100. However, as shown in the inset to Fig. 19,
during the second cycle at y,=137.6, the trajectory of the
first and second cycles begin to deviate.

There are several possible mechanisms for the introduc-
tion of stochasticity and sensitivity to initial conditions in
these systems, which include bifurcations in configuration
space caused by local symmetries of the MS packings, noise
(or numerical error) from the packing-generation protocol,
and the precise placement of rattler particles [45].

An example of a bifurcation in the energy landscape is
shown in Fig. 20. This region of the landscape is extremely
flat, and thus, the state of the system will depend on the
numerical precision and specific details of the energy mini-
mization scheme. For example, if the energy minimization
stops at point @’ in Fig. 20, it will likely move toward MS
packing a during the packing-generation process, while if it
stops at point b’, the system may proceed to MS packing b.

The configurational view of the trajectory splitting
mechanism in Fig. 19 is demonstrated in Fig. 21, where we
show the configuration before and after the splitting event at
v=",. There are subtle differences in the position and inter-
particle contacts of a single particle in the central region of
the cell at strains y,—T (gray outline) and vy, (black outline).
This small change in the contact network, which occurs in a
flat region of the energy landscape, leads to large differences

PHYSICAL REVIEW E 80, 061303 (2009)

FIG. 20. A schematic of the energy landscape V(£), which has a
flat region near local energy minima (MS packings) a and b. For the
quasistatic shear flow simulations, numerical precision and specific
details of the energy minimization scheme will influence whether
the system reaches point @’ or " in the landscape, which in turn
influences the likelihood of the system residing in MS packing a or
b.

at subsequent values of shear strain. In this case, the cause of
the flatness in the energy landscape stems from the fact that
the directions 7;; for different contacting particles j of a cen-
tral particle i are nearly collinear.

Similarly, if we add random displacements during quasi-
static shear, we can create bifurcating trajectories ¢,(7y). In
Fig. 22, we show the evolution of ¢;(y) for systems with and
without added Gaussian random displacements with both
systems initialized with the same MS packing at y=0. We
find that the trajectory with noise deviates from the original
trajectory at y=~0.2. Thus, noise is able to compete with the
contracting mechanism to increase the fraction of dynami-
cally sampled MS packings. In future studies, we will deter-
mine the fraction of MS packings visited as a function of the
noise amplitude and system size.

Rattler particles can also lead to sensitivity to initial con-
ditions. Small changes in the location of the rattler particle
even in MS packings that otherwise have the same network

(a) (b) (0

Y="9,— Ay

FIG. 21. Particle configurations immediately (a) before and (b)
after the trajectory splitting event in Fig. 19. In (b) and (c), the
configurations at shear strains vy, and y,—7T are overlayed. The only
difference between the two configurations in (b) is the position and
resulting interparticle contacts between the central and neighboring
particles in the dashed box. The particle outline and bonds are black
(gray) for the configuration at vy, (y,—7). Panel (c) is a magnified
version of the dashed box in (b).
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FIG. 22. Evolution of ¢; during quasistatic shear flow for N
=14 for a system with (dashed line) and without (solid line) Gauss-
ian noise with width 0.01 times the small particle diameter added to
the particle positions after each strain step.

of particle contacts can lead to large differences in subse-
quent contact networks if the rattler joins the connected net-
work in different locations. This effect occurs because there
is no energetic incentive for rattler particles to be located in
any particular location within the confining void region as
long as it does not overlap another particle as shown in Fig.
23. The influence of rattler particles on transition rates will
be assessed in future studies by varying the noise amplitude.

VIII. CONCLUSIONS

In this work, we enumerated and classified the mechani-
cally stable packings of bidisperse frictionless disks that oc-
cur as a function of the applied shear strain y. We showed
that MS packings form continuous geometrical families de-
fined by the network of particle contacts.

In addition, we studied the evolution of these systems
during quasistatic shear strain at zero pressure to mimic the

(a1) (a2)

7

(b1)

FIG. 23. Two distinct MS packings in panels (al) and (b1) tran-
sition to the same MS packing in panels (a2) and (b2) after succes-
sive shear strain and packing generation, except for the locations of
the thick outlined rattler particles.
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dynamics of slowly sheared granular media. For small sys-
tems N<<16, we found that the dynamics was deterministic
and strongly contracting, i.e., if the system is initialized in an
ensemble of MS packings, it will quickly contract to at most
a few MS packing families. The strong contraction stems
from an abundance of short families, a propensity for the
system to undergo more jumps than kinks in ¢;(7), the fact
that jumps only lead to increases in packing fraction, and the
observation that families at higher packing fraction attract
more jumps.

In our studies of system sizes N> 16, we began to see
features of large systems, including a dramatic increase in
the period of the periodic orbits and bifurcations that lead to
the random splitting of trajectories (¢; vs y). We suggest that
both the contraction and splitting mechanisms will persist in
the large-system limit, and the fraction of MS-packing geo-
metrical families that are visited in steady state will depend
on ratio of the splitting and contraction rates. In large sys-
tems, we suspect that the dynamics will focus the system
onto sets of frequent MS-packing families with similar struc-
tural and mechanical properties, although much more work is
required to quantify these claims.

Our long-term research objective is to develop a master-
equation formalism to describe macroscopic slowly driven
granular systems from the “bottom-up” in terms of collec-
tions of small subsystems or microstates. In this manuscript,
we took a significant step forward in this effort. We identified
the types of microstates that can exist over the full range of
shear strain and studied the probabilities with which they
occur. This information can be used as input in the master-
equation approach to calculate the contraction and splitting
rates and ultimately the steady-state distributions of macros-
cale MS packings.
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APPENDIX A: NUMERICAL DETAILS

In this appendix, we elaborate on technical details of the
simulations not described in the main text. We include spe-
cific numerical parameters of the packing-generation proto-
col and the method to construct the complete geometrical
family map.

Packing-generation protocol. In Sec. IV A, we outlined
our procedure to generate mechanically stable packings.
Here, we provide some of the numerical parameters involved
in the simulations. For the energy minimization, we employ
the conjugate gradient technique [32], where the particles are
treated as massless. The stopping criteria for the energy
minimization (V,—V,_; <V,,=10"1® and V,<V,;,=107'°,
where V, is the potential energy per particle at iteration 7) and
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the target potential energy per particle of a static granular
packing (V,,<V<2V,,) are the same as used in previous
studies [17]. For the first compression or decompression step
we use the packing-fraction increment A¢=10"*. Each time
the procedure switches from expansion to contraction or vice
versa, A¢ is reduced by a factor of 2. Using the packing
generation procedure with these parameters, we are able to
locate the jamming threshold in packing fraction ¢; to within
1078 for each static packing over the full range of . Since
we implement an energy minimization technique with no in-
ertia, we do not need to alter the stopping criteria to handle
rattler particles, which possess fewer than three contacts and
are not members of the force bearing network.

Geometrical Families. To construct the complete map of
geometrical families, we divided the region y=[0,0.5] into
small shear strain intervals 7y,,;—7y,=Ay=10"2. For the
range of system sizes N=4 to 20 studied, this choice for Ay
limited the number of rearrangement events to roughly one
per shear strain interval. At each sampled shear-strain y,, we
generated at least N,=10° MS packings using random initial
particle positions.

Two MS packings at different shear strains are considered
to belong to the same geometrical family if they possess the
same set of particle contacts. The particle contact networks
of two MS packings can be distinguished by comparing the
eigenvalues of their connectivity matrices C;;, where the ij-th
element of C is 1 if particles i and j are in contact and 0
otherwise. Two systems have the same contact network if all
of the eigenvalues of their connectivity matrices are the
same.

APPENDIX B: DYNAMICAL MATRIX

In this appendix, we calculate the elements of the dynami-
cal matrix Eq. (9) for the repulsive linear spring potential Eq.
(8). We employ slightly different notation for the dynamical
matrix compared to Eq. (9) by separating the spatial «, B8
=x, y and particle i,j=1,---,N indexes. As given in [34], for
pairwise, central potentials the dynamical matrix has the fol-
lowing form for the off-diagonal components i # j:

..
—_ i A A A s
My jp=- r”(5a,8_rijarij[3)_Cijrijarijﬁa (B1)
ij
where 7, is the ath component of 7,
aV ri; € rii i
= Mry) __ —(1 ——L>®(ﬁ- 1), (B2)
0')rl'j g;i g;; rl-j
and
PV(r;; € a;;
c,jE—(zlL)z—GD — 1 (B3)
31’11 0'121 rij

In the calculation of #; and c;, we have ignored the
S-function contributions arising from cases when particles i
and j are just touching with r;;=0;;. The diagonal compo-
nents (i=j) of the dynamical matrix are given by
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TABLE V. The eight roto-inversion matrices R; in 2D that when
applied to a given MS packing at integer values of shear strain
generate the eight equivalent polarizations with identical eigenvalue
lists of the dynamical matrix.

(1 0) (0 1) (-1 o) (o —1)
(1) 01 (2) 1o (3) 0 _1 ) Lo

(o 1) <—1 o) (o —1) <1 o)
®) 10 © 0 1 ™ -1 0 ®) 0 -1

N
> Mg jp-

J=Li%]

Miqip=— (B4)
The shear-periodic boundary conditions only affect the defi-

nition of the separation r;; for particles near the edges of the
simulation cell.

APPENDIX C: POLARIZATIONS OF MS PACKINGS

In this appendix, we provide details for generating differ-
ent polarizations in simulations and determining, which po-
larizations are distinct.

We will first describe the symmetries that MS packings
possess under shear periodic boundary conditions in unde-
formed cells, since these symmetries affect the number and
types of MS packings that can be obtained during shear. At
integer shear strains, there are eight “polarizations™ all of
which have the same list of eigenvalues of the dynamical

(@) (b)

FIG. 24. (Color online) (a) Typical MS packing at half-integer
shear strains. We apply the transformations that are consistent with
shear-periodic boundary conditions—the roto-inversion transforma-
tions R3, Rg, and Rg in Table V—to the configuration in (a) to
generate the configurations in (b)—(d). However, (a) and (b) and (c)
and (d) are related by the shear symmetry operation (rotations by 7,
R3), and thus there are only two distinct polarizations at half integer
strains.
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matrix, but different eigenvectors. A given MS packing at
integer shear strain [panel (1)] and its equivalent polariza-
tions [panels (2)-(8)] are shown in Fig. 5. Each polarization
with coordinates éi in panel (i) in Fig. 5 can be obtained from
the original MS packing &, in panel (1) using

&E=Ré, (C1)

where the eight roto-inversion matrices R; with det R;=*1
in 2D are given in Table V. In isotropically compressed sys-
tems these polarizations occur with equal probability. How-
ever, in systems subjected to shear strain, these polarizations
will occur with different probabilities.

2D systems subjected to simple planar shear flow possess
a discrete rotational symmetry; i.e., the system is unchanged
when it is rotated by 7 about an axis coming out of the page
(i.e., apply R; to a given MS packing) as shown in the bot-
tom of Fig. 5. In panels (1)—(8) in Fig. 5, we see that polar-
izations 1 and 5, 2 and 6, 3 and 7, and 4 and 8 are related by
rotations by 7, and therefore will behave the same under
simple planar shear. Thus, only four distinct polarizations at
integer shear strains remain.

PHYSICAL REVIEW E 80, 061303 (2009)

If the accumulated shear strain is half integer, MS pack-
ings will have at most only two distinct polarizations. Only
three roto-inversion transformations are consistent with
shear-periodic boundary conditions, R3, R¢, and Rg in Table
V. These transformations have been applied to the configu-
ration (a) in Fig. 24 to generate the configurations (b)—(d).
However, (a) and (b) and (c) and (d) are related by the shear
symmetry operation (rotations by 7, Rs), and thus only two
distinct polarizations remain at half-integer strains.

In general, there is only one polarization for all shear
strains other than integer and half-integer. Moreover, the
number of polarizations at integer (half-integer) strains can
be smaller than four (two) if particular MS packings possess
additional symmetries.

In simulations, we distinguish the polarizations of two
MS packings by applying all possible roto-inversion trans-
formations configurations consistent with the shear-periodic
boundary conditions to a given MS packing. We then com-
pare the eigenvector (corresponding to the smallest nonzero
eigenvalue) of the second configuration to that for all of the
roto-inverted configurations of the first and look for a match.
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